Supervised Class-Pairwise Nmf for Data Representation and Classification

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nesterov's Iterations for NMF-Based Supervised Classification of Texture Patterns

Nonnegative Matrix Factorization (NMF) is an efficient tool for a supervised classification of various objects such as text documents, gene expressions, spectrograms, facial images, and texture patterns. In this paper, we consider the projected Nesterov’s method for estimating nonnegative factors in NMF, especially for classification of texture patterns. This method belongs to a class of gradie...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Hierarchical Data Representation Model - Multi-layer NMF

In this paper, we propose a data representation model that demonstrates hierarchical feature learning using nsNMF. We extend unit algorithm into several layers. Experiments with document and image data successfully discovered feature hierarchies. We also prove that proposed method results in much better classification and reconstruction performance, especially for small number of features.

متن کامل

Semi-Supervised Boosting for Multi-Class Classification

Most semi-supervised learning algorithms have been designed for binary classification, and are extended to multi-class classification by approaches such as one-against-the-rest. The main shortcoming of these approaches is that they are unable to exploit the fact that each example is only assigned to one class. Additional problems with extending semisupervised binary classifiers to multi-class p...

متن کامل

Classification on Pairwise Proximity Data

We investigate the problem of learning a classification task on data represented in terms of their pairwise proximities. This representation does not refer to an explicit feature representation of the data items and is thus more general than the standard approach of using Euclidean feature vectors, from which pairwise proximities can always be calculated. Our first approach is based on a combin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4117410